Self Super-Resolution for Magnetic Resonance Images using Deep Networks
نویسندگان
چکیده
High resolution magnetic resonance (MR) imaging (MRI) is desirable in many clinical applications; however, there is a trade-off between resolution, speed of acquisition, and noise. It is common for MR images to have worse through-plane resolution (slice thickness) than in-plane resolution. In these MRI images, high frequency information in the through-plane direction is not acquired, and cannot be resolved through interpolation. To address this issue, super-resolution methods have been developed to enhance spatial resolution. As an ill-posed problem, state-of-the-art super-resolution methods rely on the presence of external/training atlases to learn the transform from low resolution (LR) images to high resolution (HR) images. For several reasons, such HR atlas images are often not available for MRI sequences. This paper presents a self super-resolution (SSR) algorithm, which does not use any external atlas images, yet can still resolve HR images only reliant on the acquired LR image. We use a blurred version of the input image to create training data for a state-of-the-art super-resolution deep network. The trained network is applied to the original input image to estimate the HR image. Our SSR result shows a significant improvement on through-plane resolution compared to competing SSR methods.
منابع مشابه
A Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملEfficient and Accurate MRI Super-Resolution using a Generative Adversarial Network and 3D Multi-Level Densely Connected Network
High-resolution (HR) magnetic resonance images (MRI) provide detailed anatomical information important for clinical application and quantitative image analysis. However, HR MRI conventionally comes at the cost of longer scan time, smaller spatial coverage, and lower signal-to-noise ratio (SNR). Recent studies have shown that single image super-resolution (SISR), a technique to recover HR detail...
متن کاملBrain MRI Super Resolution Using 3D Deep Densely Connected Neural Networks
Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) deta...
متن کاملEvaluation and comparison performance of deep neural networks FCN and RDRCNN in order to identify and extract urban road using images of Sentinel-2 with medium spatial resolution
Road extraction using remote sensing images has been one of the most interesting topics for researchers in recent years. Recently, the development of deep neural networks (DNNs) in the field of semantic segmentation has become one of the important methods of Road extraction. In the Meanwhile The majority of research in the field of road extraction using DNN in urban and non-urban areas has been...
متن کاملSuper Resolution Convolutional Neural Networks for Increasing Spatial Resolution of ^1 H Magnetic Resonance Spectroscopic Imaging
Proton magnetic resonance spectroscopic imaging (H-MRSI) provides noninvasive information regarding metabolic activity within the tissues. One of the main problems of MRSI is low spatial resolution due to clinical scan time limitations. Advanced post-processsing algorithms, like convolutional neural networks (CNN) might help with generation of super resolution MR spectroscopic images. In this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.09431 شماره
صفحات -
تاریخ انتشار 2018